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Multi-Estimator Based Adaptive Control Which Provides Exponential
Stability: The First-Order Case

Mohamad T. Shahab and Daniel E. Miller

Abstract— Classical adaptive controllers provide asymptotic
stabilization; neither exponential stability nor a bounded noise
gain is typically proven. In recent work it is shown that these
desired properties can be achieved by using an estimator based
on the original ideal Projection Algorithm (together with a
restriction of the parameter estimates to a given compact
convex set), rather than the commonly used modified classical
algorithm. Here the goal is to remove the convexity requirement.
To this end, we consider the first-order case with unknown
plant parameters belonging to a compact uncertainty set of
controllable pairs. The first step of our approach is to observe
that the compact uncertainty set can be covered by a finite
number of convex compact sets, each of controllable pairs. For
each of the convex compact sets, we design an estimator together
with the corresponding one-step-ahead controller, and apply a
switching logic to choose between them. We prove that the
resulting controller guarantees linear-like convolution bounds
on the closed-loop behavior, which implies exponential stability
and a bounded noise gain.

I. INTRODUCTION

Adaptive control is an approach used to deal with systems
with uncertain or time-varying parameters. The first general
results of adaptive control came about around 1980, e.g. [3],
[5], [16], [21] and [22]. However, these controllers typically
do not tolerate unmodeled dynamics, time-variations, and/or
noise/disturbances very well, see e.g. [26]; furthermore, they
put stringent assumptions on a priori information about the
structure of the plant, e.g. the sign of the high-frequency
gain. Over the following two decades, there was a great deal
of effort to address these shortcomings.

First of all, attempts were made to handle unmodeled
dynamics, slow time-variations and noise/disturbance. A
common approach was to make small controller design
changes, such as σ-modifications, signal normalization, and
deadzones, e.g. see [9], [10], and [12]. An alternative pow-
erful approach shows that adaptive controllers incorporating
an estimator which uses projection (onto a convex set of ad-
missible parameters) provides desirable properties–see [20],
[28], [27] and [30].

Second of all, a great deal of work was focused on remov-
ing (or reducing) the assumptions on structural information
of the plant, e.g. see [4], [13], [19], [25] and [29]. In all of
these results, a pre-routed switching controller was used. A
side effect of this is that they typically yield poor transient
behavior and/or a large control input signal.

Later, non-pre-routed logic-based switching approaches
to adaptive control emerged, such as Supervisory Control
[17], [18], [7] and [8]; here the complexity of the approach
grows with the size of the plant uncertainty. Other similar
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approaches are found in the literature: in [23] and [24] the
authors use multiple models and argue that the transient
behavior improved. In another approach, labelled Adaptive
Mixing Control [11], [1] and [2], results are presented
which have a tolerance to noise and unmodeled dynamics; a
convexity assumption is enforced.

In the recent papers [14] and [15] by the second co-
author, an approach is provided which guarantees a linear-
like convolution bound on the closed-loop behavior; this
yields exponential stability as well as a bounded gain on the
noise (in the context of the first-order one-step-ahead control
paradigm [14] and the pole-placement stability paradigm
[15]). The approach employs a classical design (though the
proofs are completely new); namely, the estimator is based
on the original ideal Projection Algorithm (together with
projecting parameter estimates onto a given compact convex
set), rather than the commonly-used modified classical algo-
rithm. The requirement of convexity on the set of uncertainty
is shown to play a crucial role in getting nice closed-loop
properties.

Since convexity is a very restrictive requirement, the main
objective of this paper is to extend [14] by replacing the
assumption of a convex and compact uncertainty set with
the assumption of a compact uncertainty set only. We first
show how to cover the compact set of uncertainty by a finite
number of convex sets; then we design an estimator for each
convex set, and construct some logic to switch between the
corresponding LTI compensators. A key facet of the approach
is the switching logic and the use of multi-estimation.

We use standard notation throughout the paper. We denote
Z, Z+ and N as the sets of integers, non-negative integers and
natural numbers, respectively. Let d·e denote the ceiling func-
tion. We will denote the Euclidean-norm by the subscript-less
default notation ‖ ·‖. Also, `∞ denotes the set of real-valued
bounded sequences. If Ω ⊂ Rp is a convex and compact
(closed and bounded) set, we define ‖Ω‖ := maxx∈Ω ‖x‖.

II. THE SETUP

Here we consider the first order system

y(k + 1) =

[
y(k)
u(k)

]>
︸ ︷︷ ︸
=:φ(k)>

[
a
b

]
︸︷︷︸
=:θ∗

+w(k),

y(k0) = y0, k ≥ k0, (1)

where y(k) ∈ R is the state, u(k) ∈ R is the control input,
w(k) ∈ R is the noise (or disturbance). We assume that θ∗ is
unknown and belongs to a closed and bounded (compact)

set S ⊂ R2 satisfying a controllability assumption:
[
a
0

]
6∈ S

for every a ∈ R. Here we have an exogenous reference signal
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and the control objective is to track it asymptotically while
providing a strong notion of closed-loop stability.

As discussed earlier, the property of convexity on the set
of uncertainty is shown to play a crucial role in getting nice
closed-loop properties. However, here we impose no such
assumption. If the set of admissible parameters is not convex,
the standard trick in adaptive control is to replace it with
its closed convex hull. Unfortunately, often that set contains
uncontrollable models (i.e. b = 0 in case of 1st-order plants).
Here the key idea is to cover the compact set of admissible
parameters S by a finite number of convex sets: the following
proposition illustrates that we can always obtain a cover with
two convex sets.

Proposition 1. For any compact set S ⊂{
[ ab ] ∈ R2 : b 6= 0

}
, there exist compact and convex

sets S1 and S2 which also lie in
{

[ ab ] ∈ R2 : b 6= 0
}

such that S ⊂ S1 ∪ S2.

Proof. For a given S, define
S1 := convex hull of {[ ab ] ∈ S : b > 0} ,
S2 := convex hull of {[ ab ] ∈ S : b < 0} .

The result follows immediately. �
Remark. If a convex set is complicated, it may be dif-

ficult (numerically) to project onto it. If we define ā :=
max {|a| : [ ab ] ∈ S}, b̄ := max {|b| : [ ab ] ∈ S} and b :=
min {|b| : [ ab ] ∈ S}, then Proposition 1 also holds if we
define S1 :=

{
[ ab ] ∈ R2 : a ∈ [−ā, ā], b ∈ [b, b̄]

}
and S2 :={

[ ab ] ∈ R2 : a ∈ [−ā, ā], b ∈ [−b̄,−b]
}

, which are rectan-
gles.

If S1 and S2 are large, it may be beneficial to have more
than two, but smaller, convex sets. The usefulness of the
above discussion will be obvious when we discuss parameter
estimation in the next section. At this point we assume that

S ⊂
⋃m
i=1 Si

and each set Si is compact and convex and satisfies [ a0 ] 6∈ Si
for every a ∈ R.

A. Parameter Estimation
For each Si and θ̂i(k0) ∈ Si, we design a Projection

Algorithm estimator which generates an estimate θ̂i(k) ∈ Si
at each k > k0. The associated prediction error is defined as

ei(k + 1) = y(k + 1)− φ(k)>θ̂i(k). (2)

The parameter estimation algorithm is as follows: a new
parameter estimate is found by solving the optimization
problem

argmin
θ

{
‖θ − θ̂(k)‖ : y(k + 1) = φ(k)>θ

}
yielding

θ̌i(k + 1) =

{
θ̂i(k) if φ(k) = 0

θ̂i(k) + φ(k)
‖φ(k)‖2 ei(k + 1) otherwise;

(3)

with the function Proj
Si
{·} : R2 7→ Si denoting the projection

onto the set Si, we set

θ̂i(k + 1) = Proj
Si

{
θ̌i(k + 1)

}
. (4)

(Because the set Si is closed and convex, the projection
function is well-defined.) Furthermore, it is convenient to

parametrize θ̂i(k) as θ̂i(k) =:

[
âi(k)

b̂i(k)

]
. Also, define the

associated Lyapunov function, Vi(k):=[θ∗−θ̂i(k)]>[θ∗−θ̂i(k)].
It is common in the literature to replace the above algo-

rithm with the classical projection algorithm [6], [5] (with
0 < a < 2, c > 0):

θ̂i(k + 1) = θ̂i(k) + aφ(k)
c+φ(k)>φ(k)

ei(k + 1). (5)

The addition of the c term will prevent numerical problems
when φ(k) is close to zero in (3). However, the gain of the
update law of the classical algorithm is small when φ(k)
is small, which is the reason why the closed-loop behavior
in the adaptive control context is asymptotic rather than
exponential (in general) when an estimator of this form is
used.

The following proposition lists properties of the estimation
algorithm (3)–(4):

Proposition 2 [15]. For every k0 ∈ Z, y0 ∈ R,
θ̂i(k0), θ∗ ∈ Si, w ∈ `∞, when the estimation algorithm
in (3) and (4) is applied to the plant (1), the following
holds:

Vi(k) ≤ Vi(k0)− 1

2

k−1∑
j=k0,φ(j)6=0

|ei(j + 1)|2

‖φ(j)‖2

+ 2

k−1∑
j=k0,φ(j) 6=0

|w(j)|2

‖φ(k)‖2
, k ≥ k0 + 1. (6)

B. Switching Controller
Let r(·) be the reference signal to be tracked. We assume

that it is known one step ahead. If we invoke the Certainty
Equivalence Principle there is a natural choice for the one-
step-ahead adaptive control law associated with the ith

estimator:

u(k) = − âi(k)

b̂i(k)
y(k) +

1

b̂i(k)
r(k + 1),

which ensures that r(k+ 1) = φ(k)>θ̂i(k). Here, of course,
we do not know which Si contains θ∗. In fact, θ∗ may lie
in more than one such set.

Let us define the index set I = {1, 2, . . . ,m}. To this end,
we define a switching signal σ : Z 7→ I that decides which
controller to use at any given point in time, i.e. we set

u(k) = −
âσ(k)(k)

b̂σ(k)(k)
y(k) +

1

b̂σ(k)(k)
r(k + 1). (7)

Next we define the tracking error by ε(k) := y(k) − r(k);
when the above control law is applied, it is easy to see that

ε(k + 1) = eσ(k)(k + 1). (8)

III. EXPONENTIAL STABILIZATION FOR m = 2

We begin with the case of two uncertainty sets, i.e. we
have I = {1, 2}. Here we adopt the following simple
switching rule: with an initial condition of σ(k0) = σ0,

σ(k) = argmin
i∈I

|ei(k)|, k ≥ k0 + 1. (9)

https://doi.org/10.1109/CDC.2018.8619630
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This logic chooses the model with the minimum prediction
error: it is memoryless and is a function only of signals at
the same instant. For the case when |e1(k)| = |e2(k)|, we
(somewhat arbitrarily) select σ(k) to be 1. Now, we present
the main result of this paper.

Theorem 1. Consider the plant (1) with I = {1, 2} and
suppose that the controller consisting of the estimator
(3) and (4), the control law (7), and the switching rule
(9) is applied. For every λ ∈ (0, 1), there exists a
constant γ > 0 such that for every k0 ∈ Z, y0 ∈ R,
σ0 ∈ I, θ∗ ∈ S, θ̂i(k0) ∈ Si (i ∈ I), and r, w ∈ `∞,
the closed-loop system satisfies

‖φ(k)‖ ≤ γλk−k0 |y0|+
k∑

j=k0

γλk−1−j |r(j + 1)|

+

k−1∑
j=k0

γλk−1−j |w(j)|, k ≥ k0. (10)

The above result shows that the closed-loop system expe-
riences linear-like behavior. There is a uniform exponential
decay bound on the effect of the initial condition, and
a convolution sum bound on the effect of the exogenous
signals. If the initial condition is zero, there is a bounded
gain on the map from the exogenous signals (the noise and
reference signal) to φ; in classical adaptive control this is
rarely the case. This is analogous to the result in [14] which
deals with one convex uncertainty set. Furthermore, while the
choice in (9) seems obvious, as far as we are aware there
is no proof of stability in the literature for the situation in
which the classical algorithm (5) is used in conjunction with
the control law (7).

Before proving Theorem 1 we first show that the simple
logic in (9) yields a very desirable closed-loop property.

Lemma 1. Consider the plant (1) with m = 2, and
suppose that the controller consisting of the estimator
(3) and (4), the control law (7), and the switching rule
(9) is applied. Then for every k0 ∈ Z, y0 ∈ R, σ0 ∈
{1, 2}, θ∗ ∈ S, and θ̂i(k0) ∈ Si (i = 1, 2) and r, w ∈
`∞, for every j ∈ {1, 2} and k ≥ k0 + 1 we have that

(a) |ε(k)| ≤ |ej(k)| or
(b) |ε(k + 1)| ≤ |ej(k + 1)|.

Proof. Fix k0 ∈ Z, y0 ∈ R, σ0 ∈ {1, 2}, θ∗ ∈ S, θ̂i(k0) ∈
Si (i = 1, 2), and r, w ∈ `∞, and let j ∈ {1, 2} and k ≥
k0+1 be arbitrary. Let ̄ be the element of {1, 2} which is not
j. Suppose that (b) fails to hold; in view of (8) it must be that
σ(k) = ̄; from (9) this means that |e̄(k)| ≤ |ej(k)|. Since
ε(k) ∈ {e1(k), e2(k)}, we conclude that |ε(k)| ≤ |ej(k)|,
i.e. (a) holds. �

In the above we do not make any claim that θ∗ ∈ Sσ(k)

at any time; it only makes a statement about the size of the
prediction error. Quite surprisingly, it turns out that this is
enough to ensure that closed-loop stability is attained.

We now state a technical result to be used in the proof of
Theorem 1.

Lemma 2. [14] (i) With n ∈ N ∪ {∞}, suppose that
aj ∈ R and c > 0 satisfy

n∑
j=0

a2
j ≤ c.

Then for every λ ∈ (0, 1), if we define γ :=

c
c+1
2 ( 1

λ )
c
λ2

+1, then the following holds:∣∣∣∣∏j−1

l=0
al

∣∣∣∣ ≤ γλj , j = 0, 1, . . . , n.

(ii) With n < p ≤ ∞, suppose that aj ∈ R and c1 > 0
satisfy

j+n∑
l=j

a2
l ≤ c1, j = 0, 1, . . . , p− n.

Then for every λ ∈ (0, 1), if c1, λ and n satisfy

n ≥
c1+1

2
ln (c1) + (4 c1

λ2 + 1)(ln (2)− ln (λ))

ln (2)

and γ1 := c
c1+1

2
1 ( 2

λ )
4c1
λ2

+1, then∣∣∣∣∏j−1

l=0
al

∣∣∣∣ ≤ γ1λ
j , j = 0, 1, . . . , p.

Also, before proving the main result, define the constants
s̄ := maxi ‖Si‖, ā := max{|a| : [ ab ] ∈ S1∪S2}, b̄ :=
max{|b| : [ ab ] ∈ S1∪S2}, f̄ := max{|ab | : [ ab ] ∈ S1∪S2},
and ḡ := max{| 1b | : [ ab ] ∈ S1∪S2}.

Proof of Theorem 1. The proof is a significant extension
of that of the main result of [14]. The proof will be given
for the case when no noise enters the system, followed by
the case with noise.

Fix λ ∈ (0, 1). Let k0 ∈ Z, y0 ∈ R, σ0 ∈ I, θ∗ ∈ S,
θ̂i(k0) ∈ Si (i ∈ I), and r, w ∈ `∞ be arbitrary. We know
that there exists at least one j ∈ I so that θ∗ ∈ Sj ; let i∗
denote the smallest such j.

First we establish some general bounds to be used through-
out the proof. Setting c1 := (1+f̄), c2 := ḡ, from the control
law in (7) we obtain the general bound

‖φ(k)‖ ≤ c1|y(k)|+ c2|r(k + 1)|; (11)

if we define c3 := max{ā+ b̄f̄ , b̄ḡ} from the plant equation
(1) we have the crude bound

|y(k + 1)| ≤ c3|y(k)|+ c3|r(k + 1)|+ |w(k)|. (12)

Case 1: w(k) = 0, for all k ≥ k0.
In this part, the proof has several steps. First, we will

analyze the behavior for two consecutive instants. Then, we
will consider the whole time horizon.

From Proposition 2 we have that for k ≥ k0 + 1,
k−1∑

j=k0,φ(j) 6=0

|ei∗ (j+1)|2
‖φ(j)‖2 ≤ 2Vi∗(k0) ≤ 8‖Si∗‖2 ≤ 8s̄2︸︷︷︸

=:c4

. (13)

For j ≥ k0, define

αj :=

{
|ei∗ (j+1)|
‖φ(j)‖ if φ(j) 6= 0

0 otherwise.
(14)

For φ(j) 6= 0, we have

|ei∗(j + 1)| = αj‖φ(j)‖. (15)

https://doi.org/10.1109/CDC.2018.8619630


Th
e

fin
al

pu
bl

is
he

d
ve

rs
io

n
ca

n
be

fo
un

d
in

th
e

pr
oc

ee
di

ng
s

of
th

e
IE

E
E

57
th

C
on

fe
re

nc
e

on
D

ec
is

io
n

an
d

C
on

tro
l(

C
D

C
20

18
).

D
O

I:
10

.1
10

9/
C

D
C

.2
01

8.
86

19
63

0

For φ(j) = 0, we have y(j) = u(j) = 0; from (1) we
conclude that y(j + 1) = 0, and from (2) we conclude that
ei(j + 1) = 0 for all i ∈ I, which means that (15) holds for
this case as well.

Motivated by Lemma 1, now we will analyze the closed-
loop behavior on two consecutive instants of time. Let j ∈
Z+ be arbitrary; from Lemma 1 we have that either

|ε(k0 + 2j + 1)| ≤ |ei∗(k0 + 2j + 1)| or
|ε(k0 + 2j + 2)| ≤ |ei∗(k0 + 2j + 2)|.

If we define ᾱk0+2j := max{αk0+2j , αk0+2j+1} (note from
(13) that αj ≤

√
c4), and then combine the above with (15)

and (11) we can have either
|y(k0 + 2j + 1)| ≤ c1ᾱk0+2j |y(k0 + 2j)|

+ (1 + c2c
1
2
4 )|r(k0 + 2j + 1)| or

|y(k0 + 2j + 2)| ≤ c1ᾱk0+2j |y(k0 + 2j + 1)|

+ (1 + c2c
1
2
4 )|r(k0 + 2j + 2)|;

if we combine the above two cases and use (12), then there
exist constants c5 and c6 such that for j ∈ Z+

|y(k0 + 2j + 2)| ≤ c5ᾱk0+2j |y(k0 + 2j)|
+ c6(|r(k0 + 2j + 1)|+ |r(k0 + 2j + 2)|). (16)

Now we examine the behavior across the whole time
horizon. Observe from (13) that

∑∞
j=0 ᾱ

2
k0+2j ≤ c4. Now

define λ1 = λ2

c5
. Motivated by Lemma 2, define c7 :=

c
c4+1

2
4 ( 1

λ1
)
c4
λ21

+1
. From Lemma 2 we conclude that∏j−1

l=0
ᾱk0+2l ≤ c7λj1, j ∈ Z+.

If we solve the difference inequality (16) recursively and
apply the above bound, we can obtain for j ∈ Z+

|y(k0 + 2j)| ≤ c7λ2j |y(k0)|+
j−1∑
l=0

c7c6
λ
λ2(j−l−1)|r(k0 + l + 1)|.

(17)

We can use (12) to obtain a bound for the remaining time
instants of y(k); if we combine this with (11) then the result
(10) follows.
Case 2: w(k) 6= 0 for some k.

We now analyze the case when there is noise entering the
system; this is more complicated since Vi∗(k) is no longer
monotonically decreasing. Motivated by Case 1, in the fol-
lowing we will be applying Lemma 2(ii) with a larger bound
than in (13)–define ĉ4 := 12s̄2. In light of Lemma 2(ii), also

define λ1 = λ2

c5
, p :=

⌈
ĉ4+1

2 ln (ĉ4)+(4
ĉ4
λ21

+1)(ln (2)−ln (λ1))

ln (2)

⌉
and ĉ7 := ĉ

ĉ4+1
2

4 ( 2
λ1

)
4ĉ4
λ21

+1
.

Let us turn now to defining two sets in relation to the size
of the noise: K+ =

{
j ≥ k0 : φ(j) 6= 0 and |w(j)|2

‖φ(j)‖2 <
s̄2

p

}
and

K− =
{
j ≥ k0 : φ(j) = 0 or |w(j)|2

‖φ(j)‖2 ≥
s̄2

p

}
. Now we partition

the time index {j ∈ Z : j ≥ k0} into intervals which oscillate
between K+ and K−. We can clearly define a (possibly
infinite) sequence of intervals of the form [kl, kl+1) which
satisfy: 1) k0 serves as the initial instant of the first interval;
2) [kl, kl+1) either belongs to K+ or K−; and 3) if kl+1 6=∞

and [kl, kl+1) belongs to K+ then [kl+1, kl+2) belongs to
K−, and vice versa.
Case 2a: [kl, kl+1) belongs to K−.

Let j ∈ [kl, kl+1) be arbitrary. So we have ‖φ(j)‖ = 0 or
|w(j)|2
‖φ(j)‖2 ≥

s̄2

p ; from this and the plant model (1), there exist
ĉ8, ĉ9 so that

|y(j)| ≤
{
ĉ8|w(j)| j = kl
ĉ9|w(j − 1)| j ∈ [kl + 1, kl+1].

(18)

Case 2b: [kl, kl+1) belongs to K+.
Using the same notation as in Case 1, we define

αj := |ei∗ (j+1)|
‖φ(j)‖ . For j ∈ Z+ so that kl + 2j + 1 ≤ kl+1,

we define ᾱkl+2j := max{αkl+2j , αkl+2j+1}. At this point,
the goal is to apply Lemma 2 to analyze the closed-loop
behavior. To this end, from Proposition 2 we see that if
kl+1 − kl ≤ p, then∑kl+1−1

j=kl
α2
j ≤ 8s̄2 + 4(kl+1 − kl) s̄2

p ≤ 12s̄2 = ĉ4,

so by Lemma 2(i) we have∏j−1

t=0
ᾱkl+2t ≤ ĉ7λj1, j ∈ Z+ s.t. kl + 2j + 1 ≤ kl+1,

and if kl+1 − kl > p, then by choice of p and Lemma 2(ii)
we have that∏j−1

t=0
ᾱkl+2t ≤ ĉ7λj1, j ∈ Z+ s.t. kl + 2j + 1 ≤ kl+1,

as well.
If we now analyze the closed-loop system as in the noise-

free case, we end up with a version of (16) with the noise
now included: there exists a constant ĉ6 so that
|y(kl + 2j + 2)| ≤ c5ᾱkl+2j |y(kl + 2j)|
+ ĉ6(|r(kl + 2j + 1)|+ |r(kl + 2j + 2)|+ |w(kl + 2j)|

+ |w(kl + 2j + 1)|), j ∈ Z+ s.t. kl + 2j + 1 ≤ kl+1. (19)

Using a similar analysis to that of Case 1, we can solve the
above difference inequality and conclude that there exists a
constant ĉ10 so that

|y(k)| ≤ ĉ10λ
k−kl |y(kl)|+

k−1∑
j=kl

ĉ10λ
k−j−1(|r(j + 1)|+ |w(j)|),

k = kl, kl + 1, . . . , kl+1. (20)

The final step here is to glue together the bounds on
the sequence of intervals in K+ and K−; the argument is
identical to that of [14]. �

IV. EXPONENTIAL STABILIZATION FOR m ≥ 2

Now we consider the case of m > 2 uncertainty sets. As
mentioned earlier, it may be beneficial for performance to
have more than two sets. Unfortunately, although the rule in
(9) is a well-defined rule for all cases, we are unable to prove
that it will work in case of m > 2. In particular, a potential
problem is that the algorithm could oscillate between two
bad choices, and never (or rarely) choose the correct one; it
is not clear that Lemma 1 would hold for this case. Instead,
we propose a modified version of (9). At each point in time
k we have an admissible set Ik: we initialize Ik0 = I, and
we obtain Ik from Ik−1 by removing all j ∈ Ik−1 satisfying
|ε(k)| ≤ |ej(k)|; clearly j = σ(k−1) satisfies this bound, but
more j’s may as well; if this results in Ik being empty, then
we reset Ik to be I. This is formulated in the pseudocode
in Algorithm 1. The following result is similar to that of
Lemma 1.
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Lemma 3. Consider the plant (1) for which m ≥ 2, and
suppose that the controller consisting of the estimator
(3) and (4), the control law (7), and the switching
signal defined in Algorithm 1 is applied. Then for every
k0 ∈ Z, y0 ∈ R, σ0 ∈ I, θ∗ ∈ S, θ̂i(k0) ∈ Si (i ∈ I),
r, w ∈ `∞, if k and k̄ are two consecutive reset times
of the index set I, then for every j ∈ I there exists a
k̂ ∈ (k, k̄] such that:

|ε(k̂)| ≤ |ej(k̂)|.
Proof. This follows easily from Algorithm 1. �

Theorem 2. Consider the plant in (1) with I =
{1, 2, . . . ,m} and suppose that the controller consisting
of the estimator (3) and (4), the control law (7), and the
switching signal defined in Algorithm 1 is applied. For
every λ ∈ (0, 1), there exists a constant γ > 0 such that
for every k0 ∈ Z, y0 ∈ R, σ0 ∈ I, θ∗ ∈ S, θ̂i(k0) ∈ Si
(i ∈ I) and r, w ∈ `∞, the closed-loop system satisfies

‖φ(k)‖ ≤ γλk−k0 |y0|+
k∑

j=k0

γλk−1−j |r(j + 1)|

+

k−1∑
j=k0

γλk−1−j |w(j)|, k ≥ k0. (21)

Proof. We apply an analysis similar to that of the proof of
Theorem 1; instead of analyzing two consecutive instants, we
analyze intervals between index set resets. We apply Lemma
3 for the case of j = i∗; we further utilize the fact that the
maximum length between any consecutive resets is not more
than m. We omit details due to space limitations. �

Remark. In [15] it is proven that we can leverage the fact
that a convolution bound holds in the case of a fixed plant
parameter to prove that a convolution bound (with larger
constants) also holds if we allow time-variation together with
occasional jumps. The argument provided there can be used
to prove the same thing here.

V. A SIMULATION EXAMPLE

A simulation example is provided to illustrate the results
of this paper. Consider the time-varying plant:

y(k + 1) = a(k)y(k) + b(k)u(k) + w(k),

with θ∗(k) :=[a(k) b(k)]> belonging to the uncertainty set:

S =

{[
a
b

]
∈ R2 : a ∈ [1, 2] ∪ [−2,−1], b ∈ [1, 2] ∪ [−2,−1]

}
,

which can be visualized in Figure 1. Hence, every admissible
model is unstable, and the sign of the input gain b is
unknown. Here the plant parameters are varying as follows:

a(k) =

{
− 3

2 −
1
2 sin( 1

20k), 51 ≤ k ≤ 100, 151 ≤ k ≤ 200
3
2 + 1

2 sin( 1
20k), otherwise,

b(k) =

{
− 3

2 −
1
2 cos( 1

15k), 101 ≤ k ≤ 150, 151 ≤ k ≤ 200
3
2 + 1

2 cos( 1
15k), otherwise.

In the first approach, we define two convex sets by
convexifying the 1st and 2nd quadrants and the 3rd and 4th

quadrants, respectively, yielding
S1:={[ ab ]∈R2:a∈[−2,2],b∈[1,2]}, S2:={[ ab ]∈R2:a∈[−2,2],b∈[−2,−1]}.

Algorithm 1: when m ≥ 2

1 Initialize Ik0 = I and σ(k0) = σ0;
2 while k > k0 do
3 Ik = Ik−1 \ {i ∈ Ik−1 : |ε(k)| ≤ |ei(k)|};
4 if Ik = ∅ then
5 Ik = I (index set reset)
6 end
7 σ(k) = argmin

i∈Ik
|ei(k)|

8 end

a

b

1 2

1

2

-1-2

-1

-2

Fig. 1. Uncertainty set S

We will apply the control input (7) using estimates from
(3) and (4) and σ(k) determined by (9). We set θ̂1(k0) =
[1.5 1.5]>, θ̂2(k0) = [−1.5 −1.5]>, σ0 = 2, y0 = −1, the
reference r(·) to be a unit-amplitude square wave of period
60, and noise w(·) which is a uniformly distributed random
signal, with a magnitude of 5% of the reference magnitude.
Figures 2(a) display the results. We see that the controller
does a reasonable job, even though the switching often
chooses the wrong model. Large transient may ensue, but
on average the adaptive controller provides good tracking.

As mentioned earlier, it may be beneficial to have more
than two convex sets. So in the second approach, we define
four convex sets in the following natural way:
S1:={[ ab ]∈R2:a∈[1,2],b∈[1,2]}, S2:={[ ab ]∈R2:a∈[1,2],b∈[−2,−1]},
S3:={[ ab ]∈R2:a∈[−2,−1],b∈[1,2]}, S4:={[ ab ]∈R2:a∈[−2,−1],b∈[−2,−1]}.
We will apply the control input (7) using estimates from
(3) and (4) and σ(k) determined by Algorithm 1. We
set θ̂1(k0)= [1.5 1.5]>, θ̂2(k0)= [1.5 −1.5]>, θ̂3(k0)=
[−1.5 1.5]>, θ̂4(k0)= [−1.5 −1.5]>, σ0 = 2. As above we
set y0 = −1, the reference r(·) to be a unit-amplitude square
wave of period 60, and noise w(·) which is a uniformly
distributed random signal, with a magnitude of 5% of the
reference magnitude. Figures 2(b) display the results. We
see the controller does a good job of tracking, and with
smaller transients than in the first approach. Furthermore, the
estimator does a fairly good job of tracking the time-varying
parameter. Both examples illustrate that the approach handles
time-variation and occasional jumps.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have considered the first-order case
with unknown plant parameters belonging to a closed and
bounded uncertainty set; we designed a one-step-ahead adap-
tive controller. No assumption on the convexity of the uncer-
tainty set is imposed. A parameter estimation process is run
by having multiple parallel estimators with each operating
on a compact and convex set. A switching logic is used to
determine which parameters are used in the controller. The
corresponding one-step-ahead adaptive controller guarantees
linear-like convolution bounds on the closed loop behavior,
which implies exponential stability and a bounded noise gain.

We would like to extend the proposed switching approach
to high order plants, both in the context of one-step-ahead

https://doi.org/10.1109/CDC.2018.8619630
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(b)
Fig. 2. The upper plot shows both the reference (dashed) and the output (solid); the next two plots show the parameter estimates θ̂σ(k)(k) (dashed) and
actual parameters θ∗(k) (solid); the bottom plot shows the switching signal (dashed) and the correct index (solid).

control considered here as well as the pole-placement setup
of [15]. While simulation indicate that they work, the proofs
remain elusive.
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